
1. Introduction
Understanding snow-forest interactions is critical for characterizing and predicting snowpack, across basins and 
at sites worldwide (Rutter et al., 2009). Field observations are essential for improving our process knowledge and 
for assessing model predictions of snow water equivalent (SWE) and other states (Essery et al., 2009; Lundquist 
et al., 2021; Mazzotti, Essery, Webster, et al., 2020; Moeser et al., 2016; Rutter et al., 2009; Strasser et al., 2011). 
Model improvements can be facilitated by data collected in the field, including measuring the interception and 
unloading of canopy snow (e.g., Hedstrom & Pomeroy, 1998; Raleigh et al., 2022; Storck et al., 2002) and observ-
ing the forest-altered energy balance regime (e.g., Malle et  al.,  2019; Musselman & Pomeroy,  2017). Ongo-
ing improvement and validation of SWE predictions and snow models require detailed field observations of 
forest-snow processes (Bonner, Raleigh, & Small, 2022).

Only a subset of snow data sets facilitate studies of forest-snow processes. Operational data sets (e.g., NRCS 
SNOTEL) use automated observations (sonic snow depths and snow pillows) in forest clearings that do not 
characterize the heterogeneous snowpack in the surrounding forest. Other snow research sites provide multiple 
manual measurements (snow pits) in open environments but lack replicate data collection in adjacent forests (e.g., 
Landry et al., 2014; Lejeune et al., 2019; Wayand et al., 2015). In recent years, some snow data sets have included 
observations from paired open-forest sites (e.g., Fang et al., 2019; Reba et al., 2011; Roth & Nolin, 2017; Teich 
et al., 2019), which enable investigations of the impact of forest effects on snowpack in various types of climates. 
The data presented in this publication add to this latter body of work and provide forest and open snow observa-
tions for a continental snow climate.

The field observations presented here were collected across three water years (WY, 1 October–30 September) 
2019–2021. This data set is distinguished by its extensive snow pit and snow transect data collected in paired 
forested and open environments, each with identical meteorological data collection. The data set uniquely empha-
sizes the utility of continuous meteorological and detailed snow pit and transect data for quantifying forest effects 

Abstract We present meteorology and snow observation data collected at sites in the southwestern 
Colorado Rocky Mountains (USA) over three consecutive water years with different amounts of snow water 
equivalent (SWE) accumulation: A year with above average SWE (2019), a year with average SWE (2020), and 
a year with below average SWE (2021). This data set is distinguished by its emphasis on paired open-forest sites 
in a continental snow climate. Approximately once a month during February–May, we collected data from 15 to 
20 snow pits and took 8 to 19 snow depth transects. Our sampling sites were in open and adjacent forested areas 
at 3,100 m and in a lower elevation aspen (3,035 m) and higher elevation conifer stand (3,395 m). In total, we 
recorded 270 individual snow pit density and temperature profiles and over 4,000 snow depth measurements. 
These data are complimented by continuous meteorological measurements from two weather stations: One 
in the open and one in the adjacent forest. Meteorology data—including incoming shortwave and longwave 
radiation, outgoing shortwave radiation, relative humidity, wind speed, snow depth, and air and infrared surface 
temperature—were quality controlled and the forcing data were gap-filled. These data are available to download 
from Bonner, Smyth, et al. (2022) at https://doi.org/10.5281/zenodo.6618553, at three levels of processing, 
including a level with downscaled, adjusted precipitation based on data assimilation using observed snow depth 
and a process-based snow model. We demonstrate the utility of these data with a modeling experiment that 
explores open-forest differences and identifies opportunities for improvements in model representation.

BONNER ET AL.

© 2022. American Geophysical Union. 
All Rights Reserved.

A Meteorology and Snow Data Set From Adjacent Forested 
and Meadow Sites at Crested Butte, CO, USA
Hannah M. Bonner1  , Eric Smyth1  , Mark S. Raleigh2  , and Eric E. Small1 

1Department of Geological Sciences, University of Colorado, Boulder, CO, USA, 2College of Earth, Ocean, and Atmospheric 
Sciences, Oregon State University, Corvallis, OR, USA

Key Points:
•  We describe a detailed, multiyear 

snowpack and meteorological data 
set collected in a paired forest-open 
setting in a continental climate

•  Meteorological observations are 
processed for quality and continuity 
and supplemented with downscaled 
and assimilated precipitation

•  The data set can support snow 
model evaluations and ongoing 
community investigations on 
snow-forest processes and mountain 
hydrometeorology

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
H. M. Bonner and M. S. Raleigh,
hannah.bonner@colorado.edu;
raleigma@oregonstate.edu

Citation:
Bonner, H. M., Smyth, E., Raleigh, M. 
S., & Small, E. E. (2022). A meteorology 
and snow data set from adjacent forested 
and meadow sites at Crested Butte, 
CO, USA. Water Resources Research, 
58, e2022WR033006. https://doi.
org/10.1029/2022WR033006

Received 9 JUN 2022
Accepted 1 SEP 2022

10.1029/2022WR033006
DATA ARTICLE

1 of 11

https://doi.org/10.5281/zenodo.6618553
https://orcid.org/0000-0002-8257-2007
https://orcid.org/0000-0003-3203-4152
https://orcid.org/0000-0002-1303-3472
https://orcid.org/0000-0002-5010-4954
https://doi.org/10.1029/2022WR033006
https://doi.org/10.1029/2022WR033006
https://doi.org/10.1029/2022WR033006
https://doi.org/10.1029/2022WR033006
https://doi.org/10.1029/2022WR033006
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022WR033006&domain=pdf&date_stamp=2022-09-22


Water Resources Research

BONNER ET AL.

10.1029/2022WR033006

2 of 11

on snowpack characteristics, expanding understanding of snow-forest interactions, and improving model predic-
tions of SWE, surface energy balance, and climate.

2. Study Site
The data were collected on Snodgrass Mountain (38°55'38"N, 106°58'46"W), located near Crested Butte, Colo-
rado, USA, in the southwestern Rocky Mountains (Figure 1). Snodgrass Mountain is situated in the East River 
Basin, a tributary to the Colorado River. Several scientific campaigns have converged in the East River Basin, 
including work by NASA (SnowEx; Elder et al., 2018), the U.S. Department of Energy, NOAA (i.e., SPLASH), 
and long-term environmental measurements by the nearby Rocky Mountain Biological Laboratory (Gothic, CO). 
The Butte (site 380) snowpack telemetry (SNOTEL) station is located ∼4 km to the southeast.

Snodgrass Mountain is largely forest covered from 2900 m elevation to the summit at 3,400 m (Figure 1). Forests are 
dominated by subalpine conifers, commonly Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasio-
carpa), with occasional stands of quaking aspen (Populus tremuloides; Crawford et al., 1998). Typical tree height in 
the study area is 9 m with a leaf area index (LAI) of 4. Additional canopy data are available from the Colorado East 
River Community Observatory (Kakalia et al., 2021). The area exhibits a continental snow climate, characterized 
by dry, cold air and frequent winter snow storms (Trujillo & Molotch, 2014). Over a 30-year period (1991–2021), 
the Butte SNOTEL has an average peak SWE of 390 mm, average annual temperature of 2.8°C, and average winter 

Figure 1. Snodgrass Mountain field site. The snow pit layout in the top left map was the design for WY 2019 (see text). 
Snow transects were taken in a ∼50 × 50 m square centered around each pit location. Variables measured at the weather 
stations (right photos) are as follows: Air temperature (Tair), relative humidity (RH), wind speed (Us), incoming shortwave 
radiation (Qsi), incoming longwave radiation (Qli), outgoing shortwave radiation (Qso), IR surface temperature (Tsurf), and 
snow depth (SD).
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(December–February) temperature of −6.7°C. The three water years examined differed in peak SWE: WY 2019 
was above average (493 mm); WY 2020 was near average (345 mm); WY 2021 was below average (282 mm).

Manual snow surveys were conducted on Snodgrass Mountain at multiple locations. The primary study site and 
weather stations were located at approximately 3,100 m elevation on flat ground (or local slopes less than 5°) 
at paired open (meadow) and forest (subalpine conifer) environments. In WY 2019, 16 sites within a 0.5 km 
distance were used: Seven sites in the open (sites 1–7; Figure 1), seven sites in the forest (sites 8–14), and two 
sites in an open-forest transitional zone (sites 15–16). To increase data collection efficiency, sites were consoli-
dated in WY 2020 and 2021 to three open sites (sites 2, 4, and 6) and three forest sites (sites 12–14). Two weather 
stations were installed within this array of field sites: One in the open (38°55'35.7"N, 106°58'44.1"W) and one 
in the forest (38°55'44.5"N, 106°58'40.1"W), at a horizontal separation of 300 m (Figure 1). Snow surveys were 
also conducted at two additional forested sites to examine elevation effects on snowpack: A lower elevation aspen 
stand (∼3,035 m) and an upper elevation conifer forest at the summit (∼3,395 m; Figure 1).

3. Snow Data
3.1. Snow Pit Data

We collected snowpack measurements approximately once a month, typically during February–May. At each 
visit to the primary, midmountain study site, we dug 7–9 snow pits in both forested and open locations, totaling 
14–18 pits (Table S1 in Supporting Information S1). Additionally, 1–3 snow pits each were dug at both the lower 
and upper elevation sites. In total, 84–95 snow pits were dug and recorded each water year, totaling 270 snow pits 
over the initial three-year period.

Snow pit measurements were focused on snow depth and vertical profiles of snow density and temperature. Snow 
depth was measured directly in each pit using a ruler; snow density was measured in 10 cm increments using a 
1000-cc snow cutter; and snowpack temperature was measured every 10 cm using a digital thermometer (Figure 
S1, Text S1 in Supporting Information S1). Observed depth and bulk density were used to calculate SWE. All 
digitized snow pit observations were combined into a single summary file that included pit location, site type, 
snow depth, average snow density, bulk SWE, average temperature, and cold content (Figure S2, Text S1, and S2 
in Supporting Information S1). Pit-specific files, including the full profile data, are also included in the dataset 
(Bonner, Smyth, et al., 2022).

At the midmountain, primary study site, snowpack density profiles varied with year, season, and between forest 
and open sites (Figure 2). Here, we present profiles generated by calculating the average density of all open 
(n = 96) or forest (n = 154) snow pits within a set 10 cm depth window. Snow pits with total depth that differed 
by more than ±20 cm from the median open or forest snow pit depth were excluded. Open sites generally had 
greater overall density than forest sites, but both open and forest sites followed a similar vertical pattern of 
density. During the accumulation season (Figures 2a and 2b), snow density tended to be highest at one third of the 
maximum snow depth and lowest at the snow surface. Snow density profiles became more uniform once ablation 
began, especially at the open sites (Figure 2c, Table S2 in Supporting Information S1). Higher density at the snow 
surface was common in the late melt season (Figure 2d). Depth, density, and SWE were generally higher at the 
higher elevation sites (Table S2 in Supporting Information S1).

3.2. Snow Depth Transects

Snow depth measurements were taken along the perimeter of a ∼50 × 50 m square centered around each snow pit, 
with six depth measurements on each side (24 total). Either eight (WY 2020 and 2021) or 19 (WY 2019) transects 
were collected per visit, totaling 154 transects (over 4,000 individual depth measurements) during the three-year 
sampling period (Table S1 in Supporting Information S1). The average depth in transects was very similar to 
corresponding snow pits, indicating snow pit data were collected in representative locations (Figure S3, Text S3 
in Supporting Information S1). Likewise, snow depth coefficient of variation was generally <10% until the melt 
season (Table S2 in Supporting Information S1).

4. Meteorological Data
Meteorological data collection began at the weather stations in water year 2019 and is ongoing. Both stations 
were equipped with an identical array of sensors that measured air temperature (naturally ventilated), relative 
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humidity, wind speed, snow depth, incoming and reflected shortwave radiation, incoming longwave radiation, 
and infrared (IR) surface temperature (Table 1, Figure 1). Both uplooking radiometers had heaters to reduce snow 
capping. From these data, outgoing longwave radiation, daily albedo, and dew point temperature were calculated.

4.1. Precipitation Data and Adjustments

A precipitation gauge was not deployed in the initial study period, as snowfall measurements are vulnerable to 
undercatch errors of 20%–50% (Kochendorfer et al., 2017; Rasmussen et al., 2012). Instead, we produced our 
best estimate of hourly precipitation based on downscaling and assimilation of hourly North American Land 
Data Assimilation System (NLDAS-2) reanalysis data at a 1/8° spatial resolution. We used MeteoIO to down-
scale precipitation using the inverse distance weighting with elevation detrending/reprojection (IDW_LAPSE) 
technique (Bavay & Egger, 2014).

Downscaled precipitation data were then further adjusted via data assimilation to ensure that estimated snowfall 
rates corresponded to the observed snowpack evolution at the stations. We assimilated each station's daily snow 
depth measurements into a snow model (Flexible Snow Model, FSM2, Essery, 2015) using a Particle Filter (PF) 
assimilation method. The PF is an ensemble-based method to generate best estimates of states and fluxes (e.g., 
hourly precipitation) through time, while accounting for both model and observational uncertainties. Individual 
model runs, or particles, are forced with observed meteorological data that is perturbed to reflect stochastic and 
systematic measurement errors. Those particles are then weighted based on their agreement with observations 
(here, daily snow depth). In this way, the PF identifies particles with perturbations (e.g., to precipitation) that 
generate the most accurate snowpack estimates—thus generating site-specific open and forest precipitation data. 
We generated ensembles of particles by perturbing the model forcing inputs and by varying a sensitive snow 
compaction parameter. The full PF assimilation methodology is described in Smyth et al. (2020).

FSM2 does not partition rain and snow, so we preprocessed the downscaled precipitation using a dew point 
temperature threshold of 0°C. In the model, the density of freshly fallen snow is adjusted from a default value 
of 100 kg m −3 based on concurrent wind speed and air temperature, using the methodology of the Crocus snow 
model (Brun et al., 1989).

At the forest station, observed snow depth is not only a function of precipitation—it is influenced by the forest canopy: 
Interception losses and subsequent unloading of snowfall, shading of shortwave radiation, and increased down-

Figure 2. Average snow pit density profiles at the midmountain sites during monthly visits during WY 2019–2021. Yellow lines represent open sites, green lines 
represent forest sites.
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welling longwave radiation (Conway et al., 2018; Lundquist et al., 2013; Musselman & Pomeroy, 2017; Musselman 
et al., 2008, 2015; Varhola et al., 2010). By assimilating these subcanopy snow depth observations with the PF, we 
implicitly account for these canopy-related processes, generating a time series of effective “subcanopy precipitation” 
(e.g., Smyth et al., 2020) that accounts for canopy interception losses and corresponds to the observed forest snowpack.

At the open site, WY accumulated precipitation from downscaling and data assimilation was 20%–33% higher than 
from the nearby SNOTEL, 20%–37% higher than from nondownscaled NLDAS-2, and 0%–13% higher than down-
scaled only NLDAS-2 data (Figure 3). SWE from snow pits provided a minimum estimate of accumulated precipi-
tation, given some water was lost to sublimation or melt and drainage. The downscaled and assimilated precipitation 
data were typically closest to snow pit observations, while the unadjusted precipitation data sets fell below the 
SWE-based minimum estimate (Figure 3). Both downscaled NLDAS-2 precipitation (open weather station) and 
downscaled and data assimilated precipitation (open and forest weather stations) are included in the dataset.

4.2. Quality Control and Gap-Filling Processes

Three levels of weather station data processing were provided in the data set for both the open and forest sites: 
Level 1 (L1) are raw data either in 1 min or 5 min time step format; Level 2 (L2) are quality controlled data in an 
hourly time step format; and Level 3 (L3) are quality controlled and gap-filled data in an hourly time step format 
(Bonner, Smyth, et al., 2022), a ready-to-use forcing data set for modeling applications.

4.2.1. Quality Control

L2 and L3 weather station data were quality controlled both as raw data and following aggregation into hourly 
time steps. Following Meek and Hatfield (1994), data were flagged at each time step when one or more of the 
following occurred: (a) Value was missing; (b) value was outside high/low range limits; (c) value exceeded rate 
of change limits (hourly data only); and (d) value remained constant longer than a chosen time limit (hourly 
data only; Table 1). Additionally, shortwave and longwave values were flagged when snow was detected on the 
radi ometer domes (i.e., reflected shortwave exceeded incoming shortwave during daytime, or incoming longwave 
exceeding 300 W m −2 during night with air temperature less than 0°C). This resulted in intermittent gaps in long-
wave and shortwave radiation data at both the open site (<10% overall; Figure S4 in Supporting Information S1) 
and the forest site (<20% overall, not considering a 120-day power failure; Figure S5, Table S3 in Supporting 
Information S1). Flagged values were removed from the L2 data set.

Measurement
Variable 
name(s) Sensor (supplier)

Specified sensor 
accuracy

Sensor 
height 

(m; 
open 
site)

Sensor 
height 

(m; 
forest 
site)

Quality control values

Min. 
value Max. value

Max. rate 
of change 

(h −1)

Max. 
time 
steps 

with no 
change 

(h)

Air temperature Tair EE-181 (Campbell Scientific) ±0.2°C 2.8 2.2 −40°C 40°C 15°C 4

Relative humidity RH EE-181 (Campbell Scientific) ±(1.5 + 0.015 x 
RH)%

2.8 2.2 5% 100% 50% 4

Wind speed Us, Us_max 014A (Met One) ±0.11 m s −1 3.2 2.9 0 m s −1 50 m s −1 -- 5

Incoming shortwave 
radiation

Qsi SP-510 Thermopile 
Pyranometer (Apogee)

<3% 3.2 2.8 0 W m −2 1360 W m −2 1000 W m −2 16

Reflected shortwave 
radiation

Qso SP-610 Thermopile 
Pyranometer (Apogee)

<3% 3.2 2.8 0 W m −2 1360 W m −2 1000 W m −2 16

Incoming longwave 
radiation

Qli SL-510 Thermopile 
Pyrgeometer (Apogee)

±5% 3.2 2.8 80 W m −2 440 W m −2 350 W m −2 3

IR surface temperature Tsurf SI-121 Infrared Radiometer 
(Apogee)

±0.2°C 2.9 2.6 −40°C 40°C 15°C 4

Snow depth SD Ultrasonic Depth Sensor 
(Judd)

±1 cm 3.1 2.7 0 cm 250 cm 10 cm 70

Table 1 
Sensors Deployed at Open and Forest Site Weather Stations and Quality Control Values (See Section 4.2.1)
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4.2.2. Gap-Filling

L3 weather station data were gap-filled to create a continuous hourly forcing data set consisting of air temper-
ature, relative humidity, incoming shortwave, incoming longwave, wind speed, and downscaled and adjusted 
precipitation. Data were generally complete throughout the monitoring period with less than 25% of the data set 
gap-filled (Figures S4 and S5 in Supporting Information S1). Shortwave and longwave radiation at the forest site 
required more extensive gap-filling (40%–45%; Table S3 in Supporting Information S1). Hourly model validation 
data (e.g., outgoing shortwave, snow surface temperature, and snow depth) were not gap-filled.

Three gap-filling methods were utilized, depending upon the availability of data from the other weather station, 
length of the gap, and variable. The first was based on station to station relationships. For relative humidity and 
air temperature, this was a direct replacement due to their high similarity (Figure 4); for incoming shortwave and 
longwave radiation, this was done using linear regression; for wind speed, this was done using quantile matching 
similar to other studies (Landry et al., 2014; Ménard et al., 2019; Wayand et al., 2015). Second, we considered 
mean values from the 24 hr before and after at the same weather station, similar to the method used by Liston 
and Elder  (2006), an effective approach to fill short, sporadic data gaps (e.g., Henn et  al.,  2013). The third 
gap-filling method was based on downscaled and bias-corrected NLDAS-2 data. All NLDAS-2 data were down-
scaled using MeteoIO (Bavay & Egger, 2014). NLDAS-2 data for incoming shortwave and longwave radiation 
were bias-corrected using linear regression; data for wind speed were corrected using quantile matching; no bias 
correction was necessary for the downscaled temperature and humidity.

We identified the hierarchy of candidate gap-filling approaches using cross-validation (see Text S4 in Supporting 
Information S1). We then applied these techniques sequentially until all missing data were gap-filled. Station-to-
station gap-filling was the most effective technique in the majority of cases considered.

4.3. Meteorological Data Characterization

Forest canopy effects were observed in the meteorological data (Figure 4). At midday, the open weather station 
received 450–750 W m −2 more incoming shortwave and 65–100 W m −2 less incoming longwave than the forest 
weather station. These differences led to hourly net radiation being 70–80 W m −2 higher in the forest at night, 
but overall daily average net radiation was 31–156  W  m −2 higher in the open. Despite these differences, air 

Figure 3. Water year accumulated precipitation at the midmountain open weather station using Butte snowpack telemetry 
(SNOTEL), nondownscaled North American Land Data Assimilation System (NLDAS-2), downscaled NLDAS-2, and 
downscaled/assimilated NLDAS-2 data. Median open snow water equivalent (SWE) measured at snow pits is a minimum 
estimate of accumulated precipitation with interquartile ranges indicated by “+”.
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temperature remained similar between open and forested sites. However, the snow or ground surface temperature 
was typically warmer in the forest at night time. Wind speed was typically higher (i.e., >1 m s −1) in the open.

5. Example Application
We conducted a modeling experiment to highlight the utility of this data set for characterizing open-forest snow-
pack differences and model evaluation. The Factorial Snow Model (FSM2; Essery,  2015; Mazzotti, Essery, 
Moeser, & Jonas, 2020) was used to simulate snowpack during WY 2019–2021 at the open and forest stations, 
which are surrounded by the midmountain snow pit and transect sampling sites (Figure 1). FSM2 runs were 
forced using the respective L3 weather station data with a single configuration and a maximum of 15 layers. 
No forest canopy was specified at the open site. Because the forest weather station data represent undercanopy 

Figure 4. Hourly averages per month as recorded by the forest and open weather stations. The difference between averages in open and forest is also indicated.
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meteorological conditions, we ran FSM2 without a modeled canopy at the forest site. Given this configuration, 
the precipitation input at the forest site represented the addition of mass to the snowpack after accounting for 
throughfall, unloading, and canopy losses (e.g., “effective subcanopy precipitation”). We could have used the 
open weather station data for both sites and ran FSM2 with a modeled canopy for the forest site but we instead 
chose this approach to utilize all meteorological data. Even though the L3 precipitation data were adjusted using 
assimilation of site-specific weather station snow depth (see Section 4), the snow pit and snow transect data 
provide independent checks on model performance.

At the open site, FSM2 matched SWE observations within 40 kg m −2, most bulk density observations within 
30 kg m −3, and most depth observations within 20 cm (Figure 5). At the forest site, FSM2 bulk density was simi-
larly close to observations. However, modeled forest SWE was less accurate, especially at and after peak SWE 
in WY 2019. This resulted from differences in observed and modeled snow depth. FSM2-predicted snow depth 
was 40–50 cm less than measured in snow pits in March and April 2019. The model underprediction (∼30%) 

Figure 5. Snow water equivalent (SWE), snow density, and snow depth from FSM2 simulations and snow pit observations. 
Bulk values (a–b), with interquartile range for snow pit observations (indicated by +), and sampling date specific profiles 
(c–d) are shown.
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was approximately quadruple the coefficient of variability in midmountain forest snow depth (8%; Table S2 in 
Supporting Information S1). As weather station snow depth was used to adjust the precipitation via data assimi-
lation, this indicated snow depth at the forest weather station was not the same as median forest snow pit depth in 
WY 2019. However, it was similar in WY 2020 and 2021. This result, particularly in contrast to the consistently 
accurate performance of FSM2 for the open site, highlights the challenge of representing a heterogeneous forest 
snowpack and the importance of multiple depth measurements.

The snow pit data were also useful to highlight discrepancies between modeled and observed vertical profiles of 
snowpack characteristics that were not apparent when considering bulk values. While FSM2 and measured bulk 
density were similar in March and April of WY 2019 (Figure 5), the snowpack profiles differed considerably 
(up to 80 kg m −3). The model-predicted snow density was too high near the ground and too low near the snow 
surface in March 2019. Comparing snowpack profiles is challenging due to difference in simulated and observed 
depth (e.g., Lehning et al., 2001) but their relative patterns are still instructive. Many snowpack models, including 
FSM2, do not represent vapor transport due to temperature gradients (Domine et al., 2019). This precludes the 
development of lower density layers of faceted grains at the base of the modeled snowpack, which can be seen 
in the March and April 2019 profiles (Figures 5c and 5d). This result demonstrates the utility of this dataset, as a 
diversity of research questions—ranging from SWE retrievals using remote sensing to investigating the effect of 
snow layer hardness on animal mobility—relies on accurate modeled snowpack profiles (e.g., Sivy et al., 2018; 
Venäläinen et al., 2021).

6. Conclusions
Meteorological and snowpack data were collected in a paired open-forest setting near Crested Butte, Colo-
rado. Meteorological measurements from matched forest and open weather stations were quality controlled 
and gap-filled to provide continuous forcing data for WY 2019–2021. Extensive snow pit (∼90 pits per year) 
and snow transect (∼1,300 points per year) data were collected near the weather stations and at higher and 
lower elevations. These unique data have been made available to the community to support investigations of 
snow processes and model development in a forested mountain landscape in a continental climate. They also 
have potential utility to support recent and ongoing campaigns near Crested Butte related to snow remote sens-
ing (NASA SnowEx), land-atmosphere interactions and mountain hydrology (e.g., DOE SAIL), and mountain 
weather (e.g., NOAA SPLASH). Data collection is ongoing, and the datasets will be expanded annually as new 
observations are collected and processed.

Data Availability Statement
The datasets described here are available for download from Bonner, Smyth, et  al.  (2022) at https://doi.
org/10.5281/zenodo.6618553.
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